metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetraaquabis{5-[2-(1H-tetrazol-5-yl)ethenyl]pyrazolato- κN^2 }manganese(II) dihydrate

Tuoping Hu

Department of Chemistry, North University of China, Taiyuan, Shanxi 030051, People's Republic of China Correspondence e-mail: hutuopingsx@yahoo.com.cn

Received 8 January 2008; accepted 29 April 2008

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.001 Å; R factor = 0.022; wR factor = 0.069; data-to-parameter ratio = 18.1.

The title compound, $[Mn(C_4H_3N_8)_2(H_2O)_4] \cdot 2H_2O$, represents the first structurally characterized transition metal complex of the 1,2-bis(tetrazol-5-yl)ethene ligand. The complex molecule occupies a special position on an inversion centre and the Mn atom has a tetragonally distorted octahedral coordination. The bis(tetrazolyl)ethene ligand is planar within 0.0366 (7) Å. All 'active' H atoms participate in hydrogen bonds, which link molecules of the complex and the uncoordinated water molecules into an infinite three-dimensional framework.

Related literature

For related literature, see: Huang et al. (2005); Demko & Sharpless (2001).

Experimental

Crystal data $[Mn(C_4H_3N_8)_2(H_2O)_4]\cdot 2H_2O$ $M_r = 489.32$ Triclinic, $P\overline{1}$ a = 6.2296 (2) Å b = 7.0093 (2) Å c = 12.1212 (3) Å $\alpha = 84.405 (1)^{\circ}$ $\beta = 89.457 \ (1)^{\circ}$

```
\gamma = 67.016 \ (1)^{\circ}
V = 484.70 (2) Å<sup>3</sup>
Z = 1
Mo K\alpha radiation
\mu = 0.75 \text{ mm}^{-1}
T = 273 (2) K
0.36 \times 0.28 \times 0.16 mm
```

Data collection

Bruker SMART CCD area-detector	9107 measured reflections
diffractometer	3246 independent reflections
Absorption correction: multi-scan	3149 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.015$
$T_{\min} = 0.717, \ T_{\max} = 0.887$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.022$	179 parameters
$wR(F^2) = 0.068$	All H-atom parameters refined
S = 1.04	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
3246 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Mn1-O1	2.1923 (7)	Mn1-N2	2.2538 (7)
Mn1-O2	2.1835 (8)		
O2-Mn1-O1	84.57 (3)	O1-Mn1-N2	90.24 (3)
O2-Mn1-N2	91.07 (3)		

Table 2			
Hydrogen-bond geometry	(Å.	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} 01 - H1B \cdots N1^{i} \\ 01 - H1A \cdots 03^{ii} \\ 02 - H2B \cdots 03^{iii} \\ 02 - H2A \cdots N6^{iv} \\ 03 - H3A \cdots N5^{v} \\ 03 - H3B \cdots 01 \\ N8 - H8 \cdots N4^{vi} \end{array}$	0.833 (18) 0.823 (18) 0.790 (18) 0.81 (2) 0.82 (2) 0.80 (2) 0.926 (18)	2.021 (18) 1.940 (18) 1.996 (19) 2.04 (2) 2.09 (2) 2.30 (2) 1.792 (18)	2.8419 (10) 2.7599 (11) 2.7797 (11) 2.8472 (10) 2.8922 (11) 3.0693 (12) 2.7171 (10)	168.8 (17) 174.0 (16) 171.4 (18) 173.7 (18) 164.2 (19) 160 (2) 176.6 (16)

Symmetry codes: (i) x - 1, y, z; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) x - 1, y, z + 1; (v) -x + 1, -y + 1, -z; (vi) x + 1, y, z.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author is grateful for funding from the Natural Science Foundation of Shanxi Province (2007011033), the Program of Technological Industrialization in Universities of Shanxi Province (20070308) and the Start-up Fund of the Northern University of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2068).

References

- Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945-7950.
- Huang, X. F., Song, Y. M., Wu, Q., Ye, Q., Chen, X. B., Xiong, R. G. & You, X. Z. (2005). Inorg. Chem. Commun. 8, 58-60.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, m772 [doi:10.1107/S1600536808012464]

Tetraaquabis{5-[2-(1*H*-tetrazol-5-yl)ethenyl]pyrazolato-κN²}manganese(II) dihydrate

T. Hu

Comment

The 1,2-bis(1,2,3,4-tetrazol-5-yl)ethene ligand (H₂BTAE) was previously reported in its twice deprotonated form in the cystal structure of its sodium salt pentahydrate (Huang *et al.*, 2005). The present paper provides the fist example of its structurally characterized complex with a transition metal; the ligand in this complex is monodeprotonated.

The molecule of $Mn(H-BTAE)_2(H_2O)_4$ occupies a special position in the inversion centre (Fig. 1); the Mn1 atom has a tetragonally distorted octahedral coordination (Table 1). The H-BTAE ligand has essentially planar conformation, the maximum deviation of the N6 atom from its mean plane being 0.0366 (7) Å. The geometry of the ligand is similar to the one observed in Huang *et al.* (2005).

All "active" hydrogen atoms in the structure participate in the H-bonding (Table 2); the extensive H-bond system links molecules of the complex and non-coordinated water molecules into three-dimensional infinite network (Fig. 2).

Experimental

 $MnCl_2.4H_2O$ (0.5 mmol, 99 mg) and 1,2-bis(1,2,3,4-tetrazol-5-yl)ethene (1 mmol, 192 mg) (Demko & Sharpless, 2001) were added to 30 ml of water:MeOH (1:1) mixture. After stirring for 30 min at room temperature, the pH value was adjusted to 7 by 1*M* NaOH, and clear solution was allowed to evaporate in the air. Nice prism-shaped crystals of the title compound were obtained after 3 days. The crystals were filtered, washed by EtOH and dried in the air.

Refinement

All H atoms were located in the difference map and refined isotropically [O—H 0.79 (2)–0.83 (2) Å; C—H 0.91 (1) and 0.96 (1) Å; N—H 0.93 (2) Å].

Figures

Fig. 1. Molecular structure showing 50% probability displacement ellipsoids. The unlabeled atoms are derived from the reference atoms by means of the (1 - x, -y, 1 - z) symmetry transformation.

Fig. 2. Packing diagram viewed down the *a* axis, The hydrogen bonds are shown as dotted lines.

Tetraaquabis{5-[2-(1H-tetrazol-5-yl)ethenyl]pyrazolato-κN²}manganese(II) dihydrate

Crystal data

$[Mn(C_4H_3N_8)_2(H_2O)_4] \cdot 2H_2O$	Z = 1
$M_r = 489.32$	$F_{000} = 251$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.676 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 6.2296 (2) Å	Cell parameters from 7983 reflections
b = 7.0093 (2) Å	$\theta = 3.2 - 33.5^{\circ}$
c = 12.1212 (3) Å	$\mu = 0.75 \text{ mm}^{-1}$
$\alpha = 84.405 \ (1)^{\circ}$	T = 273 (2) K
$\beta = 89.457 \ (1)^{\circ}$	Prism, brown
$\gamma = 67.016 \ (1)^{\circ}$	$0.36 \times 0.28 \times 0.16 \text{ mm}$
V = 484.70 (2) Å ³	

Data collection

Bruker SMART CCD area-detector diffractometer	3246 independent reflections
Radiation source: fine-focus sealed tube	3149 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.015$
T = 273(2) K	$\theta_{\text{max}} = 33.5^{\circ}$
φ and ω scans	$\theta_{\min} = 3.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.717, \ T_{\max} = 0.887$	$k = -10 \rightarrow 10$
9107 measured reflections	$l = -16 \rightarrow 18$

Hydrogen site location: difference Fourier map

Extinction correction: SHELXL97 (Sheldrick, 2008),

All H-atom parameters refined

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{max} < 0.001$

 $\Delta\rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

 $w = 1/[\sigma^2(F_0^2) + (0.039P)^2 + 0.093P]$

Refinement

Refinement on F^2 Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.022$

 $wR(F^2) = 0.068$

S = 1.05

3246 reflections

179 parameters

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Primary atom site location: structure-invariant direct Extinction coefficient: 0.022 (3) methods

Secondary atom site location: difference Fourier map

Special details

Experimental. H atoms were located on intermediate difference Fourier map

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.5000	0.0000	0.5000	0.02323 (6)
01	0.13139 (12)	0.18659 (13)	0.45633 (6)	0.03342 (15)
O2	0.48182 (15)	0.26842 (14)	0.58308 (6)	0.03732 (17)
O3	0.15295 (14)	0.60925 (13)	0.38023 (6)	0.03452 (15)
H3A	0.108 (4)	0.639 (3)	0.3151 (17)	0.063 (5)*
H3B	0.180 (4)	0.488 (3)	0.3935 (17)	0.068 (6)*
N1	0.80858 (13)	0.13919 (13)	0.30839 (6)	0.02546 (14)
N2	0.60467 (13)	0.13162 (13)	0.34123 (6)	0.02647 (14)
N3	0.46087 (14)	0.17201 (14)	0.25572 (6)	0.02953 (16)
N4	0.56698 (13)	0.20725 (13)	0.16459 (6)	0.02663 (15)
N5	1.08450 (14)	0.30165 (13)	-0.16586 (6)	0.02657 (14)
N6	1.28887 (14)	0.30586 (14)	-0.20234 (6)	0.02983 (16)
N7	1.43373 (14)	0.27581 (14)	-0.12043 (6)	0.03067 (16)
N8	1.32424 (13)	0.25048 (12)	-0.02771 (6)	0.02534 (14)
C1	0.78023 (14)	0.18638 (13)	0.19858 (6)	0.02208 (14)
C2	0.96111 (15)	0.20610 (14)	0.12755 (7)	0.02469 (15)
C3	0.93208 (15)	0.24900 (14)	0.01755 (7)	0.02401 (15)
C4	1.11010 (14)	0.26607 (13)	-0.05597 (6)	0.02185 (14)
Н3	0.794 (2)	0.271 (2)	-0.0175 (12)	0.035 (3)*
H2	1.104 (3)	0.186 (2)	0.1658 (12)	0.039 (4)*
H8	1.405 (3)	0.232 (3)	0.0389 (15)	0.057 (5)*
H1A	0.047 (3)	0.239 (3)	0.5070 (15)	0.046 (4)*
H1B	0.050 (3)	0.155 (3)	0.4134 (15)	0.055 (5)*
H2B	0.587 (3)	0.304 (3)	0.5865 (15)	0.052 (4)*
H2A	0.417 (3)	0.280 (3)	0.6422 (17)	0.057 (5)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.02135 (10)	0.03467 (10)	0.01477 (8)	-0.01276 (7)	0.00178 (6)	-0.00004 (6)
01	0.0225 (3)	0.0535 (4)	0.0236 (3)	-0.0133 (3)	-0.0009 (2)	-0.0078 (3)

supplementary materials

O2	0.0443 (4)	0.0551 (5)	0.0264 (3)	-0.0324 (4)	0.0122 (3)	-0.0141 (3)
O3	0.0370 (4)	0.0392 (4)	0.0279 (3)	-0.0154 (3)	-0.0016 (3)	-0.0036 (3)
N1	0.0241 (3)	0.0396 (4)	0.0164 (3)	-0.0169 (3)	0.0007 (2)	-0.0007 (2)
N2	0.0249 (3)	0.0414 (4)	0.0161 (3)	-0.0170 (3)	0.0019 (2)	0.0003 (3)
N3	0.0255 (3)	0.0484 (4)	0.0179 (3)	-0.0190 (3)	0.0011 (2)	0.0012 (3)
N4	0.0250 (3)	0.0419 (4)	0.0161 (3)	-0.0174 (3)	0.0002 (2)	0.0011 (3)
N5	0.0283 (3)	0.0380 (4)	0.0167 (3)	-0.0167 (3)	0.0015 (2)	-0.0020(3)
N6	0.0302 (4)	0.0437 (4)	0.0185 (3)	-0.0178 (3)	0.0051 (3)	-0.0027 (3)
N7	0.0268 (4)	0.0464 (4)	0.0213 (3)	-0.0174 (3)	0.0052 (3)	-0.0024 (3)
N8	0.0230 (3)	0.0373 (4)	0.0172 (3)	-0.0138 (3)	0.0015 (2)	-0.0006 (3)
C1	0.0232 (3)	0.0296 (3)	0.0159 (3)	-0.0133 (3)	0.0014 (2)	-0.0012 (2)
C2	0.0236 (4)	0.0351 (4)	0.0190 (3)	-0.0158 (3)	0.0024 (3)	-0.0014 (3)
C3	0.0234 (4)	0.0332 (4)	0.0189 (3)	-0.0150 (3)	0.0025 (3)	-0.0019 (3)
C4	0.0234 (3)	0.0277 (3)	0.0164 (3)	-0.0122 (3)	0.0017 (2)	-0.0021 (2)

Geometric parameters (Å, °)

Mn1—O2 ⁱ	2.1835 (8)	N2—N3	1.3112 (10)
Mn1—O1	2.1923 (7)	N3—N4	1.3336 (9)
Mn1—O2	2.1835 (8)	N4—C1	1.3427 (11)
Mn1—O1 ⁱ	2.1923 (7)	N5—C4	1.3304 (10)
Mn1—N2 ⁱ	2.2538 (7)	N5—N6	1.3541 (10)
Mn1—N2	2.2538 (7)	N6—N7	1.2931 (11)
O1—H1A	0.823 (18)	N7—N8	1.3420 (10)
O1—H1B	0.833 (18)	N8—C4	1.3403 (11)
O2—H2B	0.790 (18)	N8—H8	0.926 (18)
O2—H2A	0.81 (2)	C1—C2	1.4526 (11)
ОЗ—НЗА	0.82 (2)	C2—C3	1.3360 (11)
O3—H3B	0.80 (2)	C2—H2	0.963 (15)
N1—C1	1.3361 (10)	C3—C4	1.4499 (11)
N1—N2	1.3468 (10)	С3—Н3	0.914 (14)
O2 ⁱ —Mn1—O2	180.0	N3—N2—N1	110.34 (6)
O2 ⁱ —Mn1—O1	95.43 (3)	N3—N2—Mn1	115.77 (5)
O2—Mn1—O1	84.57 (3)	N1—N2—Mn1	132.31 (6)
O2 ⁱ —Mn1—O1 ⁱ	84.57 (3)	N2—N3—N4	108.57 (7)
O2—Mn1—O1 ⁱ	95.43 (3)	N3—N4—C1	105.93 (7)
O1—Mn1—O1 ⁱ	180.0	C4—N5—N6	105.63 (7)
O2 ⁱ —Mn1—N2 ⁱ	91.07 (3)	N7—N6—N5	111.07 (7)
O2—Mn1—N2 ⁱ	88.93 (3)	N6—N7—N8	106.55 (7)
O1—Mn1—N2 ⁱ	89.76 (3)	C4—N8—N7	108.63 (7)
O1 ⁱ —Mn1—N2 ⁱ	90.24 (3)	C4—N8—H8	134.5 (11)
O2 ⁱ —Mn1—N2	88.93 (3)	N7—N8—H8	116.8 (11)
O2—Mn1—N2	91.07 (3)	N1-C1-N4	110.73 (7)
O1—Mn1—N2	90.24 (3)	N1—C1—C2	123.47 (7)
O1 ⁱ —Mn1—N2	89.76 (3)	N4—C1—C2	125.79 (7)
$N2^{i}$ Mn1 N2	179,999 (2)	C3—C2—C1	122.84 (8)

Mn1—O1—H1A	116.9 (11)	С3—С2—Н2	122.3 (9)
Mn1—O1—H1B	125.3 (12)	C1—C2—H2	114.9 (9)
H1A—O1—H1B	106.3 (16)	C2—C3—C4	124.29 (8)
Mn1—O2—H2B	123.3 (13)	С2—С3—Н3	121.3 (9)
Mn1—O2—H2A	114.9 (13)	С4—С3—Н3	114.4 (9)
H2B—O2—H2A	109.2 (17)	N5—C4—N8	108.11 (7)
H3A—O3—H3B	105.6 (18)	N5—C4—C3	124.43 (8)
C1—N1—N2	104.43 (7)	N8—C4—C3	127.46 (7)
C1—N1—N2—N3	0.04 (10)	N6—N7—N8—C4	-0.01 (10)
C1—N1—N2—Mn1	164.68 (7)	N2—N1—C1—N4	-0.02 (10)
O2 ⁱ —Mn1—N2—N3	61.58 (7)	N2—N1—C1—C2	-178.57 (8)
O2—Mn1—N2—N3	-118.42 (7)	N3—N4—C1—N1	-0.01 (10)
O1—Mn1—N2—N3	-33.84 (7)	N3—N4—C1—C2	178.50 (8)
O1 ⁱ —Mn1—N2—N3	146.16 (7)	N1—C1—C2—C3	178.52 (9)
O2 ⁱ —Mn1—N2—N1	-102.42 (8)	N4—C1—C2—C3	0.19 (14)
O2—Mn1—N2—N1	77.58 (8)	C1—C2—C3—C4	-178.84 (8)
O1—Mn1—N2—N1	162.16 (8)	N6—N5—C4—N8	0.29 (10)
O1 ⁱ —Mn1—N2—N1	-17.84 (8)	N6—N5—C4—C3	-179.93 (8)
N1—N2—N3—N4	-0.05 (11)	N7—N8—C4—N5	-0.18 (10)
Mn1—N2—N3—N4	-167.49 (6)	N7—N8—C4—C3	-179.96 (8)
N2—N3—N4—C1	0.03 (10)	C2-C3-C4-N5	177.57 (9)
C4—N5—N6—N7	-0.30 (10)	C2—C3—C4—N8	-2.68 (15)
N5—N6—N7—N8	0.19 (11)		
Symmetry codes: (i) $-x+1, -y, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1—H1B…N1 ⁱⁱ	0.833 (18)	2.021 (18)	2.8419 (10)	168.8 (17)
O1—H1A···O3 ⁱⁱⁱ	0.823 (18)	1.940 (18)	2.7599 (11)	174.0 (16)
O2—H2B···O3 ^{iv}	0.790 (18)	1.996 (19)	2.7797 (11)	171.4 (18)
O2—H2A···N6 ^v	0.81 (2)	2.04 (2)	2.8472 (10)	173.7 (18)
O3—H3A…N5 ^{vi}	0.82 (2)	2.09 (2)	2.8922 (11)	164.2 (19)
O3—H3B…O1	0.80 (2)	2.30 (2)	3.0693 (12)	160 (2)
N8—H8…N4 ^{vii}	0.926 (18)	1.792 (18)	2.7171 (10)	176.6 (16)
Symmetry codes: (ii) x-1, y, z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z+1; (vi) -x+1, -y+1, -z; (vii) x+1, y, z.				

Fig. 1

Fig. 2

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraaquabis{5-[2-(1*H*-tetrazol-5-yl)ethenyl]pyrazolato- κN^2 }manganese(II) dihydrate. Corrigendum

Tuoping Hu

Department of Chemistry, North University of China, Taiyuan, Shanxi 030051, People's Republic of China Correspondence e-mail: hutuopingsx@yahoo.com.cn

Received 2 October 2008; accepted 31 October 2008

The chemical name in the title of the paper by Hu [*Acta Cryst.* (2008), E**64**, m772] is corrected.

In the paper by Hu [*Acta Cryst.* (2008), E**64**, m772], the chemical name in the title is incorrect. The correct title should be 'Tetraaquabis{5-[2-(1*H*-tetrazol-5-yl)ethenyl]tetrazolato- κN^2]manganese(II) dihydrate'.